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Abstract 
We suggest a novel visual approach to teaching topics in elementary algebra from a viewpoint that is 

characteristic of modern mathematics. It puts emphasis on families of mathematical like-objects, 

rather than on a prototypical object from a given family. Thanks to rich computer-supported virtual 

mathematical environments (like VisuMatica), it becomes feasible to convey this advanced circle of 

ideas to students with a modest mathematical background. In the paper, we us illustrate our approach 

with a few basic examples; they revolve around the problem of solving quadratic and cubic equations. 

 

1. The Root to Coefficient Map for Quadratic Polynomials 

Consider the problems of multiplying linear polynomials, factoring quadratic polynomials, solving 

quadratic equations, making sense of the quadratic formula. Think of endless exercises involving 

forms like (x – 2)(x + 7), exercises that promote rules like “FOIL”, exercises in determining the 

zeros of polynomials, exercises in solving quadratic equations like x2 – 2x – 3 = 0 by factoring, by 

completing the square, by using the quadratic formula. Students meet them first in a non-visual 

space of symbolic expressions. Later, when representations do get visual, they struggle to make 

appropriate connections between a space of one kind (symbolic forms) and a space of another (xy-

graphic representations). Think of the equivalent forms that we ask them to comprehend:  

(x – 3)2 – 1, x2 – 6x + 8, (x – 2)(x – 4). Think of the connections that we ask them to make between 

changes in symbolic form and changes in xy-graphs.  

We propose to look at this material from a radically different point of view. Consider the monic 

polynomial f(x) = (x – 3)(x – 2). It can also be written in the form f(x) = x2– 5x + 6. The coordinate 

pair (3, 2) represents the polynomial in one way; the coordinate pair (-5, 6) the same polynomial in 

another. Thus, points in the coordinate plane can either represent the zero (or root) form or the 

coefficient form of the quadratic.1 The fact that we can always convert the root form into a 

coefficient form means that we can define a map from the root space to the coefficient space. 

VisuMatica, a comprehensive software for visualizing mathematics, is an appropriate tool for 

the task. It is a brainchild of the second author. All the figures in this paper are produced with the 

VisuMatica help. 

Given enough time, students have little trouble in defining the root-to-coefficient map  

V: (r1 , r2) → (-r1- r2, r1r2). There is a good chance that asking them to construct this map is a more 

appealing way to get them to connect the roots to the coefficients. Once the map V is defined, the 

 
1 We are dealing only with monic polynomials, that is, with those for which the coefficient of x

2 is 1. 
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student can investigate its geometry. The color-coding in VisuMatica helps to identify points in the 

domain with their images in the range: for 1-to-1 maps F, the color of each point z and its image 

F(z) are identical; for other maps, the color correspondence is more subtle and layered. Placing the 

cursor in the range window allows the user to see its preimage(s) in the domain window. In the 

coefficient (range) window, the screen snap in Figure 1 shows the result of mapping points from the 

root (domain) window. The student has created the diagonal line {r1 = r2} in the domain:  its V-

image seems to be the boundary between the points that are hit by the map V and those that are not. 

 
 

Figure 1: the root-to-coefficient map V 

There are lots of issues to explore. What quadratic polynomials are represented by the points 

that are not in the image of V? What is the bc-equation of the (parabolic?) boundary D of the shaded 

region? (We call this D the discriminant curve.) What is the image of all quadratic polynomials that 

have multiple zeros? Why do all the images of domain points fall on or below the discriminant 

curve D? How is this related to the quadratic formula? As one experiments with the V-images, it 

becomes obvious that different points in the root space (the points (2, 3) and (3, 2) for example) 

map to the same point in the coefficient space. Is there a subset of the domain for which the map is 

1-to-1? Finally, is there an inverse map that sends the appropriate points (b, c) to the real points  

(r1, r2)? 

Notice that all of the questions relate to two representational spaces that are visual and similar. 

Contrast this with standard questions connecting representations that are either both symbolic, or an 

odd mating of a symbolic to a coordinate xy-representation. In a second year algebra course, we 

may suppose that the student has already made a connection between linear equations and their 

graphs and probably quadratic equations and their graphs.  

Once a student determines that the discriminant curve is the image of the line {r2 = r1}, then 

the parametric equations b = -2r1 and c = r1
2 generate the discriminant equation c = b2/4. It is 

important to observe that only the bc-points that lie on or beneath this parabola represent equations 

that have real roots.  

If a student uses VisuMatica’s zoom-out feature to take an expanded view of the coefficient 

space, the region above the parabola seems to shrink. 
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Figure 2: Solving real quadratic equations probabilistically 

As one zooms out in stages, the space above the discriminant curve occupies proportionately 

less of the square window. This says something important about the solutions of quadratic equations 

having real coefficients. Here are a couple of questions that can get students thinking about this. 

 Estimate the probability that the quadratic equations represented by points in a 10,000 by 

10,000 region of the coefficient space have real zeros? 

 What happens to this probability as the region of the bc-plane (shown in the window) 

increases in size? 

It is surprising to discover that, observed at a large enough scale, almost all quadratic equations with 

real coefficients are solvable over the real numbers! 

The geometry of the plane is useful in classifying and organizing the modular space it 

represents. In the case of the root space, we have investigated the image of the line {r2 = r1}, which 

represents the set of quadratic polynomials having one root of multiplicity 2. There are two 

interesting families of quadratic polynomials: the vertical lines represent the family of quadratic 

polynomials having a known “first” root; the horizontal lines represent the family of quadratic 

polynomials having a known “second” root. The character of the images of these lines under the 

root-to-coefficient map V ought to be of interest. 

 

 

 
 

Figure 3: The enveloping geometry of the real root-to-coefficient map V 

VisuMatica allows its users create a grid in the domain window. The screen snap in Figure 3 

shows the image of a 20 by 20 grid under the root-to-coefficient map V. The result is quite startling. 

Why do the images of vertical and horizontal lines in the domain space all appear to be lines 

https://ejmt.mathandtech.org/Contents/v5n1a2/Figure2.avi
https://ejmt.mathandtech.org/Contents/v5n1a2/Figure3.avi
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tangent to the discriminant curve D? In other words, is D the enveloping curve for this family of 

straight lines?  

If r1 = 3 is a root, then substituting 3 in the polynomial equation gives 32 + b(3) + c = 0. The 

resulting linear equation c = -3b – 9 in the variables b and c describes the image of the line r1 = 3. 

Try calculating the V-image of a few more vertical lines. The slope of the line (-3 in the case r1 = 3) 

seems always to be the opposite of the root; the y-intercept of the line (-9 in the case r1 = 3) seems 

always to be the opposite of the square of the root. Is it possible to prove this? 

This is a lovely opportunity to show how a change in viewpoint can pay off. Switch the roles of 

variables and parameters.  A vertical line in the root space is one for which the first root is some 

number k and therefore it has an equation {r1 = k}. However, the fact that k is a root means that  

k2 + bk + c = 0. But this is the equation of a line in the bc-plane: the fixed root k is now just a 

coefficient!  The line c = -kb – k2, expressing c as a function of b, represents the image of {r1 = k} 

under the root-to-coefficient map. Indeed, its slope is -k! 

One way of arguing that the image lines are tangent to the discriminant curve depends on 

showing that the image of {r1 = k} must contain a point on the discriminant parabola and does not 

contain points above it. We think that many second year algebra students are capable of making this 

argument. 

By the way, here is a nice problem for an enterprising student: devise a graphic method for 

solving quadratic equations using tangents to the discriminant curve D = {c = b2/4} in the bc-plane. 

The solution makes use of the fact that any two tangent lines to D that pass through a coefficient 

point (b, c) must have slopes that are the negative of the two roots of the equation  

x2+ bx + c = 0. We envision a neat project: to design and built an analogue quadratic-equation-

solving machine. 

 

2. The Inverse Map  

Many students know the quadratic formula, but nobody likes it… We aim to change their view of 

this mathematical contraption by treating the formula as a coefficients-to-roots map! Let us order 

real roots by their magnitude: r2 ≤ r1. This has the effect of restricting the root space to points on or 

under the line {r2 = r1}. In other words, the range of the coefficient-to-root map is restricted to the 

subspace {r2 ≤ r1}. (This provides a nice opportunity to deal with some of the issues relating to 

maps and their inverses.) Under the restriction b2 – 4c ≥ 0 in the coefficient bc-space, the quadratic 

formulas  

   
generate a coefficient-to-root map W.  

Once students define the W map, VisuMatica offers a rich opportunity to explore the 

connection between real coefficients and real roots. The image of the line {r2 = r1} under the root-

to-coefficient map V is the discriminant parabola D. Therefore the image of D under the coefficient-

to-root map W should be the line {r2 = r1}.  

An image of a square in the domain reveals an odd condensation of roots in the range space 

(Figures 5 and 6).  

 

r1 =
−b+ b2 − 4c

2
r2 =

−b− b2 − 4c

2
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Figure 4: The real coefficient-to-root map W 

The pattern in the range window is quite surprising:  there seems to be empty space below the 

line {r1 = r2}. Furthermore, points in the root space occur in a relatively narrow belt bounded by 

curves that look like hyperbolas. What is going on? Increasing the scale seems to make things 

worse:  it looks as if most points in the root space have no preimages in the coefficient space—an 

obvious absurdity. Furthermore, seen at this scale, one of every pair of roots in the image seems 

always to be approximately 0! 

 

 
 

Figure 5: The same map W viewed at a different scale 

However, increasing the scale of the coefficient-space window serves to demonstrate that there 

are indeed points very far out in the coefficient space that map to points in the seemingly empty 

regions in the root-space window.  The fact that c = r1r2 also indicates why the roots concentrate the 

way they do. The roots in the range window must lie between four branches of two hyperbolas. 

When the range scale is large, this region appears to be very close to the axes. 

https://ejmt.mathandtech.org/Contents/v5n1a2/Figure5.avi
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Figure 6: Resolving the scale paradox for the map W 

 

3. Modular Spaces of Cubic Polynomials 

Next we launch a similar graphic investigation of the universe of cubic (monic) polynomials. It is a 

3-dimensional space, so VisuMatica is still able to handle the visualization challenge. However, the 

geometry becomes more intricate and the relevant mathematic a bit more advanced and interesting.   

If r1, r2, and r3 are the roots of a cubic equation x3 + bx2 + cx + d = 0, then  

x3 + bx2 + cx + d = (x - r1)(x – r2)(x – r3).  As a result, we are getting the formulas:  

b = -(r1+ r2+ r3),   c = r1r2 + r2r3 + r3r1,   d = -r1r2r3. 

They define a root-to-coefficient map V: (r1, r2, r3) —> (b, c, d) whose geometry reflects various 

aspects of the problem of solving cubic equations. First, let us assume that all the coefficients and 

roots are real. Then V maps R3
root, the space of roots, to R3

coef, the space of coefficients.   

Before examining the geometry of the map V: R3
root—> R3

coef, with the help of VisuMatica, we can 

visualize its slice over the plane {b = const}. An interesting slice {b = 0} produces the space of 

depressed cubic polynomials. The roots of a depressed polynomial satisfy the relation r1 + r2 + r3 = 

0. Therefore, r1 and r2 can be chosen as independent variables, and r3 = - r1- r2. Replacing r3 with - 

r1 - r2 in the formulas for V, we get a new map Vdepr: R
2

root—> R2
coef from the r1r2-plane to the cd-

plane. This map is easier to visualize than its 3D analogue V. Figure 7 depicts the image of Vdepr. 

Note that D, the image of the diagonal line {r1 = r2} under the map Vdepr, is a cubic curve whose 

parametric equation is given by the formulas {c = – r1
2 – r2

2 – r1r2,  d = – r1
2r2 – r2

2r1}. 

Equivalently, the curve D is given by the equation {4c3 + 27d2 = 0}. It is called the discriminant 

curve. 

Experimenting with the VisuMatica, we see that the curve D is exactly the boundary of the domain 

Vdepr(R
2

root). Moreover, Vdepr(R
2

root) is given by the inequality {4c3 + 27d2 ≤ 0}. As in the case with 

quadratic equations, we encourage students to interpret these phenomena. For instance, what is the 

significance of the empty region {4c3 + 27d2 > 0}? Does it mean that the equations x3 + cx + d = 0 

have no real solutions when 4c3 + 27d2 > 0? Of course, this would contradict to the basic theorem of 

real algebra, which claims that any real polynomial of odd degree has a real root! After a bit of 

contemplation, we realize that the region {4c3 + 27d2 > 0} represents polynomials with a single 

simple real root (the other two roots form a complex-conjugate pair). Thus, the region {4c3 + 27d2 ≤ 

0} represents polynomials with all their roots being real. 
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Figure 7: The image of the depressed real root-to-coefficient map Vdepr. Note the pattern formed by 

the Vdepr-images of the vertical lines  

Let us glance at the Vdepr-images of vertical lines {r1 = const} in the r1r2-plane. They form a 

remarkable pattern of rays in the cd-plane: again, the rays seem to be tangent to the discriminant 

curve D! Even the fact that Vdepr maps a vertical line to a ray merits an explanation; after all, Vdepr is 

a cubic polynomial map. Thus we should expect that a generic line should be mapped to a cubic 

curve. For example, the points in the Vdepr-image of the line {r1 = 5}, evidently must satisfy the 

equation {53 + 5c + d = 0}. The latter is an equation of a line residing in the cd-plane. Note that it 

slope is -5, minus the root r1 = 5, a phenomenon already familiar from the investigations of 

quadratic map V. It takes a bit of calculus to verify that such a line is tangent to the curve D at a 

point where they intersect. This observation suggests a construction of another analogue equation-

solving device: the algebraic problem of solving the cubic equation x3 + cx + d = 0 is equivalent to 

the geometric problem of finding lines that pass through the point (c, d) and are tangent to the 

discriminant curve {4c3 + 27d2 = 0}! When {4c3 + 27d2 < 0}, there are three such tangent lines; 

when {4c3 + 27d2 = 0} and (c, d) ≠ (0, 0), there are two tangent lines; when {4c3 + 27d2 > 0}, the 

tangent line is unique.  

What about solving depressed cubic equations {x3 + cx + d = 0} probabilistically? Specifically, 

 

Figure 8: Solving real cubic equations x3 + cx + d = 0 probabilistically  

what is the probability that a randomly chosen equation x3 + cx + d = 0 has three real roots, and 

what is the probability that it has a single real root? Figure 8 provides the answer: the probability is 

1/2 and 1/2, respectively! 
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As in the case of quadratic equations, there is a cumbersome formula that solves cubic equations in 

radicals. It is commonly called the Cardano Formula. Here is a brief reminder how the formula 

works. Let  ≠ 0 be any complex number from the set {-c/2 + (d2/4 + c3/27){1/2}}{1/3} (in general, the 

cardinality of this set is 6). Let  = - p/(3). Then the complex solutions of the equation z3 + cz + d 

= 0 are:  +   + 2 2 +   where  = -1/2 + i 3 /2.  Paradoxically, when the equation 

has three real roots (when 4c3 + 27d2 < 0), we are forced to pick complex  and ; however, when 

only one real solution is available,  and  are real numbers, and so is the solution x =  + !  

The Cardano algorithm implies that c = -3, and d = - 3 - 3. These relations motivate us to 

introduce the real Cardano map C: R2
 —> R2

cd, defined by the formula c = -3,  d = - 3 - 3. Its 

image is shown in Figure 9. Note that C(R2
) is complementary to the image of the real cubic root-

to-coefficient map V (cf. Figure 7). 

 

Figure 9: The image of the Cardano Map C: R2
 —> R2

cd. The diagonal line { = } is mapped to 

the discriminant curve D. 

 

Figure 10: Under the map C: R2
 —> R2

cd the lines {x :=  +  = const} are mapped to the lines 

tangent to the discriminant curve (this is not evident from the figure: to verify this property, one 

needs to extend the rays). 

Let us take still another look at the geometry of depressed cubic equations. Consider the real surface 

S = {x3 + cx + d = 0} in the space R3
cdx. Figure 11 shows the shape of S.2 

 

For each point (c*, d*) in the cd-plane, the intersection of the vertical line {c = c*, d = d*} with the 

surface S consists of points (c*, d*, x*), where x* is a solution of the equation x3 + c*x + d* = 0. So, 

 
2 in the figure, p = c, q = d, and z = x. 
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for (c*, d*) such that 4(c*)3 + 27(d*)2 < 0, we should expect three intersections, for (c*, d*) such 

that 4(c*)3 + 27(d*)2 > 0 — one intersection, and, for exceptional (c*, d*) such that 4(c*)3 + 27(d*)2 

= 0, — two intersections.  

 

Figure 11: The cubic surface S = {x3 + cx + d = 0} 

Figure 12: The cubic surface S = {x3 + cx + d = 0} being assembled from two surfaces: the red 

surface is suspended over the domain {4c3 + 27d2 < 0}, the green surface—over the domain {4c3 + 

27d2 > 0}.    
 

This surface S can be assembled from two complementary pieces as shown in Figure 12, the left 

picture. The first piece is suspended over the domain {4c3 + 27d2 < 0} and is shown on the right. 

The second (green) piece is suspended over the domain {4c3 + 27d2 > 0}. Both pieces are sewed 

along a curve E that is suspended over the discriminant curve D in the cd-plane.  Therefore, looking 

https://ejmt.mathandtech.org/Contents/v5n1a2/Figure12.avi
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at semitransparent S from far away in the direction of the x-axis, we will see the familiar images of 

Figures 7 and 9. 

Finally, let us discuss how we can visualize the map V: R3
root —> R3

coef “in its full splendour”. 

 

Figure 13: The discriminant surface D2 separates the coefficient space R3
bcd into two chambers. The 

first one, marked with “1”, represents polynomials with a single real root, the second one, marked 

with “111”, represents polynomials with three real roots. 

Figure 13 depicts an important and revealing stratification in the space of real monic cubic 

polynomials. The strata are marked with the labels “1”, “111”, “12”, “21”, and “3”. They represent 

the combinatorial patterns of real roots, taken with their multiplicities, and presented in the order in 

which they reside in the number line R. For example, “111” stands for polynomials with three 

distinct real roots, r1 < r2 < r3, “12” for the polynomials with two real roots, r1 < r2, where r1 is of 

multiplicity 1 and r2 is of multiplicity 2. In contrast, “21” stand for the polynomials with two real 

roots, r1 < r2, where r1 is of multiplicity 2 and r2 is of multiplicity 1. The label “3” represents 

polynomial with a single root of multiplicity 3. Those polynomials form a cubic curve C in R3
coef. 

The image of V is the chamber that is labelled by “111”. It is bounded by the two-winged blue 

surface D2. The wings are labelled by “12” and “21” and are attached to the cusp C. In fact, D2 is 

generated by the lines that are tangent to the curve C! 

 
VisuMatica can even help to get an insight into the modular spaces of the monic real polynomials of 

degree 4. Of course, it is difficult to visualize objects in the 4-dimensional space. So we restrict our 

attention to the 3-dimensional slice of the 4-dimensional reality, namely, to the space of depressed 

polynomials of degree 4, that is, to the real polynomials of the form x4 + cx2 + dx + e. The result is 

shown in Figure 14. As in Figure 13, the labels reflect the combinatorial patterns of real roots. The 

blue-orange discriminant surface , called the Swallow Tail, represents polynomials with at least 

one multiple real root. It divides the modular space of polynomials into three chambers (marked 

with the three spheres). They correspond to polynomials with four real roots (labelled “1111”), two 

real roots (labelled ”11”), and no real roots at all (labelled “”). Note that  (as the surface in 

Figure 13) is a ruled surface: as the left picture in Figure 14 testifies, it formed by a family of lines.  

https://ejmt.mathandtech.org/Contents/v5n1a2/Figure13.avi
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Figure 14: The natural stratification in the space of depressed real polynomials of degree four 

 

4. Conclusions 

Take the suggested investigations as an indication of the richness of the root-coefficient mapping 

environment. Investigating the maps can be approached on two levels—observational and algebraic. 

We think that the mapping environment with its strong visual component is likely to motivate and 

engage students and will lead to a better understanding of the most important issues relating to the 

solution of polynomial equations. The investigations suggested by Section 3 could also serve well 

and motivate the students who study the Multivariable Calculus. More importantly, these activities 

are designed to promote in students the view of mathematics adopted by its modern practitioners.  

Further developments of these ideas could be found in the papers [1], [2], or in our forthcoming 

book “The Shape of Algebra” [3]. 
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